Transient heat flow in a semi-infinite solid

Consider a semi-infinite solid, the initial temperature Ti .
We seek an expression for the temperature distribution in the solid, As a function of the time and x.
$\mathrm{q}_{\text {in }}-\mathrm{q}_{\text {out }}=$ accumulation
$q(x)-q(x+d x)=\rho C p v \frac{d T}{d t}$
$q(x+d x)=q(x)+d x \frac{d q x}{d x}$

Assume length in direction y and $\mathrm{z}=1$
$\mathrm{y} \longrightarrow \infty$
$V=d x * d y * d z=1 * 1 * d x=d x$
$\mathrm{Z} \longrightarrow \infty$
$q(x)-q(x)-d x \frac{d q x}{d x}=\rho C p d x \frac{d T}{d t}$
Divide by dx \longrightarrow
$-\frac{d q x}{d x}=\rho C p \frac{d T}{d t}$
$q(x)=-k \frac{d T}{d x} \quad$ [Fourier law]
$-\frac{d}{d x}\left[-k \frac{d T}{d x}\right]=\rho \mathrm{Cp} \frac{\mathrm{dT}}{\mathrm{dt}}$
$K \frac{d^{2} T}{d x^{2}}=\rho C p \frac{d T}{d t}$
$\frac{d^{2 T}}{d x^{2}}=\frac{\rho C p}{k} \frac{d T}{d t}$
$\frac{\rho \mathrm{Cp}}{\mathrm{k}}=\frac{1}{\alpha} \quad$, where α is thermal diffusivity $=\frac{\mathrm{k}}{\rho \mathrm{Cp}}$
$\frac{\mathrm{d}^{2 \mathrm{~T}}}{\mathrm{dx}^{2}}=\frac{1}{\alpha} * \frac{\mathrm{dT}}{\mathrm{dt}}$ \qquad

The initial condition: $\quad \mathrm{t}=0$ at $\mathrm{T}=\mathrm{Ti} \longrightarrow \mathrm{T}(\mathrm{x}, 0)=\mathrm{Ti}$
It is three cases to find temperature distribution:

Case 1 Constant surface temperature

B.C: $\quad \mathrm{T}(0, \mathrm{t})=\mathrm{Ts}$

Equation 1 is solved by lablace transformation method, the solution is:
$\frac{\mathrm{T}-\mathrm{Ts}}{\mathrm{Ti}-\mathrm{Ts}}=\operatorname{erf} \frac{\mathrm{x}}{2 \sqrt{\alpha t}}$ 2

Ts = Surface temperature.
$\mathrm{Ti}=$ Initial temperature.
erf $=$ Error function.
To find the heat rate
$q=\frac{\mathrm{kA}(\mathrm{Ts}-\mathrm{Ti})}{\sqrt{\pi \alpha \mathrm{t}}} \exp \left(-\frac{\mathrm{x}^{2}}{4 \alpha \mathrm{t}}\right)---------------3$
Equation 3 is applied to find q at any part of the body (any value of x).
But at the surface ($\mathrm{x}=0$)
$\mathrm{q}=\frac{\mathrm{kA}(\mathrm{Ts}-\mathrm{Ti})}{\sqrt{\pi \alpha \mathrm{t}}}$

Case 2 Constant heat flux

B.C: $\quad \frac{\mathrm{q}}{\mathrm{A}}=-\mathrm{k} \frac{\mathrm{dT}}{\mathrm{dx}} \mathrm{x}=0 \quad$ The temperature distribution
$T-T_{i}=\frac{2 q_{0} \sqrt{\alpha \tau / \pi}}{k A} \exp \left(\frac{-x^{2}}{4 \alpha \tau}\right)-\frac{q 0 x}{k A}\left(1-\operatorname{erf} \frac{x}{2 \sqrt{\alpha \tau}}\right)$

Case 3 Convection heat transfer.

B.C: heat convection to the surface $=$ heat conduction to the surface .
$\left.\mathrm{h} \mathrm{A}(\mathrm{T}-\mathrm{T} \infty)\right|_{\mathrm{x}=0}=-\left.\mathrm{k} \mathrm{A} \frac{\mathrm{dT}}{\mathrm{dx}}\right|_{\mathrm{x}=0} \quad$ The solution is \longrightarrow

$$
\frac{T-T_{i}}{T_{\infty}-T_{i}}=1-\operatorname{erf} \bar{X}-\left[\exp \left(\frac{h x}{k}+\frac{h^{2} \alpha \tau}{k^{2}}\right)\right] \times\left[1-\operatorname{erf}\left(\bar{X}+\frac{h \sqrt{\alpha \tau}}{k}\right)\right]
$$

Where

$$
\bar{X}=x /(2 \sqrt{\alpha \tau})
$$

Example:

A very large slab of copper is initially at temperature of $300{ }^{\circ} \mathrm{C}$, the surface temperature is suddenly lowered at $35{ }^{\circ} \mathrm{C}$. What temperature at depth of 7.5 cm and 4 min .

$$
\alpha=11.23 * 10^{-5} \mathrm{~m}^{2} / \mathrm{sec}
$$

$\mathrm{T}(0.075 \mathrm{~m}, 240 \mathrm{sec})=$?

Solution

$$
\begin{aligned}
& \frac{\mathrm{T}-\mathrm{Ts}}{\mathrm{Ti}-\mathrm{Ts}}=\operatorname{erf} \frac{\mathrm{x}}{2 \sqrt{\alpha \mathrm{t}}} \\
& \frac{\mathrm{x}}{2 \sqrt{\alpha \mathrm{t}}}=\frac{0.075}{2 \sqrt{11.23 * 10^{-5} * 240}}=0.2284
\end{aligned}
$$

From table A -1 appendix A (Holman) and using interpolation
erf $0.2284=0.2533$

$$
\frac{\mathrm{T}-\mathrm{Ts}}{\mathrm{Ti}-\mathrm{Ts}}=0.2533
$$

$\mathrm{T}=0.2533(300-35)+35=102.1^{\circ} \mathrm{C}$

Example:

A semi-infinite slab of copper is exposed to a constant heat flux at the surface of $0.5 * 10^{6} \mathrm{~W} / \mathrm{m}^{2}$, so that there is not convection at the surface
a- What is the surface temperature after 5 min if the initial temperature of slab is $20^{\circ} \mathrm{C}$.
b- What is the temperature at the distance of 15 cm from the surface after 5 min and same initial temperature.

Take the $\alpha=11.23 * 10^{-5} \mathrm{~m}^{2} / \mathrm{sec} \quad, \mathrm{k}=386 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$

Solution

a- $T-T_{i}=\frac{2 q 0 \sqrt{\alpha \tau / \pi}}{k A} \exp \left(\frac{-x^{2}}{4 \alpha \tau}\right)-\frac{q 0 x}{k A}\left(1-\operatorname{erf} \frac{x}{2 \sqrt{\alpha \tau}}\right)$
not value of $\mathrm{x} \longrightarrow \mathrm{x}=0$ the general equation \longrightarrow
$T-T_{i}=\frac{2 q_{0} \sqrt{\alpha \tau / \pi}}{k A}$

$$
\mathrm{T}-20=\frac{2 * 0.5 * 10^{6} *\left(\sqrt{\left.11.23 * 10^{-5} * 300\right) / \pi}\right)}{386} \longrightarrow
$$

$$
\mathrm{T}=20+268.3=288.3^{\circ} \mathrm{C}
$$

b- $\quad T-T_{i}=\frac{2 q 0 \sqrt{\alpha \tau / \pi}}{k A} \exp \left(\frac{-x^{2}}{4 \alpha \tau}\right)-\frac{q 0 x}{k A}\left(1-\operatorname{erf} \frac{x}{2 \sqrt{\alpha \tau}}\right)$
$\frac{\mathrm{x}}{2 \sqrt{\alpha t}}=\frac{0.15}{2 \sqrt{11.23 * 10^{-5} * 300}}=0.4086$
erf 0.4086 from table A-1 and using interpolation $=0.4336$
$\frac{x^{2}}{4 \alpha t}=\frac{(0.15)^{2}}{4 * 11.23 * 10^{-5} * 300}=(0.4086)^{2}=0.167$
$\sqrt{\alpha \mathrm{t} / \pi}=\sqrt{11.23 * 10^{-5} * 300 / \pi}=0.104$
$\mathrm{T}-20=\frac{2 * 0.5 * 10^{6} *\left(\sqrt{\left.11.23 * 10^{-5} * 300\right) / \pi}\right)}{386} * \exp ^{-\mathbf{0 . 1 6 7}}-$
$\frac{0.5 * 10^{6} * 0.15}{386} *[1-0.4336]$ \qquad
$\mathrm{T}-20=228-109.5=138.5 \mathrm{C}^{\circ}$

Example:

A thick concrete stone wall having a uniform temperature of $54{ }^{\circ} \mathrm{C}$ is suddenly subjected to an air stream at $10^{\circ} \mathrm{C}$. The heat transfer coefficient is $10 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$. Calculate the temperature in the concrete slab at depth of 7 cm after 30 min .
$\alpha=7 * 10^{-7} \mathrm{~m}^{2} / \mathrm{sec}, \mathrm{k}=1.37 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$
$\mathrm{T}(0.07 \mathrm{~m}, 1800 \mathrm{sec})=$?

Solution

Case 3

$$
\begin{aligned}
& \frac{T-T_{i}}{T_{\infty}-T_{i}}=1-\operatorname{erf} \bar{X}-\left[\exp \left(\frac{h x}{k}+\frac{h^{2} \alpha \tau}{k^{2}}\right)\right] \times\left[1-\operatorname{erf}\left(\bar{X}+\frac{h \sqrt{\alpha \tau}}{k}\right)\right] \\
& \overline{\mathrm{X}}=\frac{\mathrm{x}}{2 \sqrt{\alpha t}}=\frac{0.07}{2 \sqrt{7 * 10^{-7} * 1800}}=0.987
\end{aligned}
$$

$\operatorname{erf}(\bar{X})=\operatorname{erf} 0.987=0.83719$
$\frac{\mathrm{h} \sqrt{\alpha t}}{\mathrm{k}}=\frac{10 * \sqrt{7 * 10^{-7} * 1800}}{1.37}=0.259$
$\operatorname{erf}\left(\overline{\mathrm{X}}+\frac{\mathrm{h} \sqrt{\alpha t}}{\mathrm{k}}\right)=\operatorname{erf}(0.987+0.259)=$
$\operatorname{erf}(1.246)=0.920971$
$\frac{\mathrm{hx}}{\mathrm{k}}=\frac{10 * 0.07}{1.37}=0.511$
$\frac{\mathrm{h}^{2} * \alpha t}{\mathrm{k}^{2}}=\frac{10^{2} * 7 * 10^{-7} * 1800}{1.37^{2}}=0.067$
$\frac{\mathrm{T}-54}{10-54}=1-0.83719-\exp ^{(\mathbf{0 . 5 1 1 + 0 . 0 6 7)}}[1-0.920971]$
$\mathrm{T}-54=0.022 *[10-54]$
$\mathrm{T}=53.03{ }^{\circ} \mathrm{C}$

